

IEEE-SA IoT Steering Committee

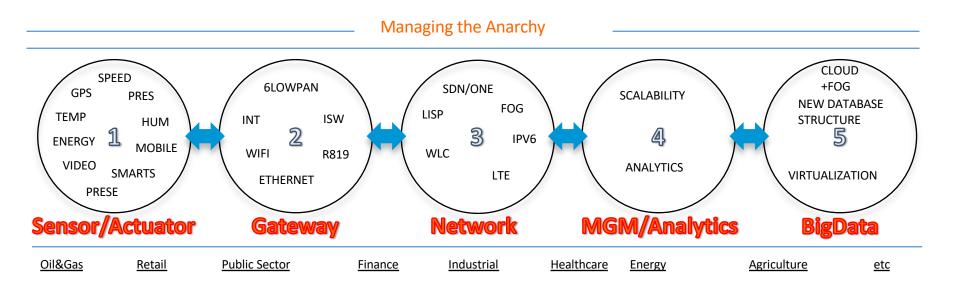
Standard for Establishing Quality of Data Sensor Parameters in the Internet of Things Environment

Sept 2018

IEEE Team Collaboration – 60px in the WG.

Juan Cazilla Chair, IEEE P2510 and Sales Engineer, Cisco

Gerard Hayes President & CEO Wireless Research Center of North Carolina



Ravi Subramanian Technical Director, IEEE Conformity Assessment Program

CECA "Innovation Learning Process"

How we can have a technical development that could be adaptive to the unpredictable future?

Problem to solve in IoT customers

- Multiples Sensor Brands (what brand should they buy?)
- Large Enterprises and SCC+ probably will install 100 of different sensor brands and models in the next 5 to 10 years.
- Several (upgrades/calibration/changes/Security issues) in the next years that will affect his operation environment. Customer will need some help from an independent organism like IEEE.
- One CRITICAL OPERATIONAL decision and ONE Analytics Engine -> Multiples IoT Implementations
- Multiples method to acquire the data / Multiples Vendors, Models & Prices
- Operational Decision (Close the O&G pipe or Stop the card) -> multiples subsystems involved. Multiples sources family's with different level of accuracy.

Data and IT Capability by Stage of Analytical Champion

- Stage 1: The Organization is plagued by missing or poor-quality data, multiple definitions of its data, and poorly integrated systems.
- Stage 2: The Organization collets transactions data efficiently but often lacks the right data for better decision making.
- Stage 3: The Organization has a proliferation of business intelligence tools and data marts, but most data remains unintegrated, no standardized, and inaccessible
- Stage 4: The Organization has high-quality data, an enterprise-wide analytical plan, IT process and governance principles, and some embedded or automated analytics.
- Stage 5: The Organization has a full-fledged analytic architecture that is enterprise-wide, fully automated and integrated into processes, and highly sophisticated

Thomas Davenport

IEEE PAR 2510 – Welcome and Presentations

IoT Innovation Process

- Helping Customers today and tomorrow
 - Massive Sensor Deployments
 - Heterogeneous sensor environments
 - Market motivation (Customers open to buy new brand sensors)
 - How we can Help ClOs/CEOs/Actuators/Analytics to take more effective decisions in Critical Operations (Airports, O&G, Mining, SCC+, Logistics, etc)

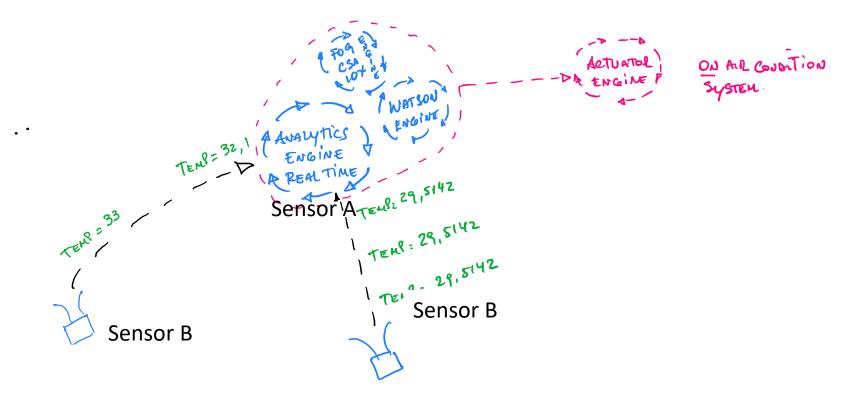
Passive Standard (Documents) Vs Active Standards (Along the Time).

IEEE PAR 2510 – Why does the market need something like this..?

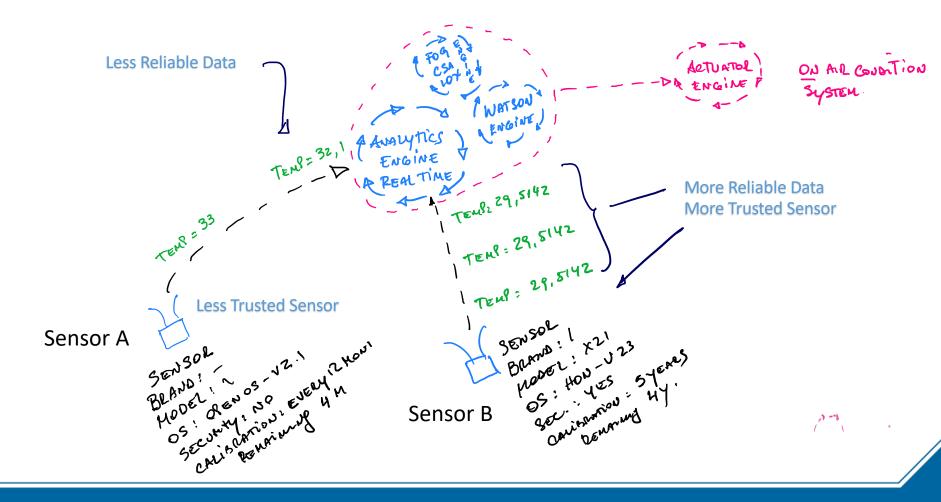
- Reduce possible mistakes, when customers take critical decisions in OT environments.
 - Industrial safety, today we don't know the reliability level of the information
 - We have no idea related with the quality degradation or corruption over the time, and we do not have tools to enforce the quality levels.
 - The idea is to understand the accuracy level before the actuator runs/actuate.
- Customers need a single source standard organization solution because the market is so big, complex and without much control.
- More efficient decisions reduce industrial risk, save lives, reduce the Operational costs and also improve customers productivity.

IEEE P2510 Vision

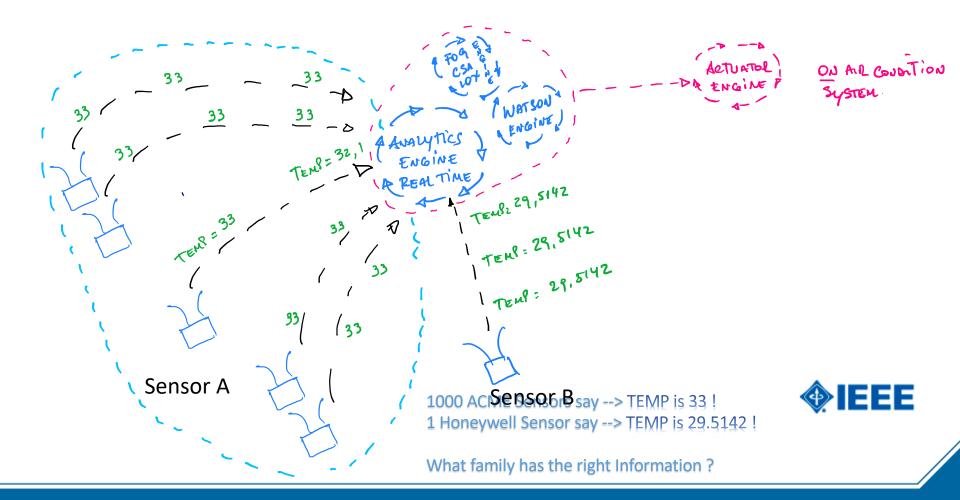
- Heterogeneous Vendor Sensors environment will be natural in next years.
- We will try to Provide Standard Solution to.....
 - Understand the quality of the data considering the sensor (brand, model, OS, battery life, battery degradation, calibration cycles, security, etc)
 - New competitive and complex situation in large customers (New sensor manufactures, and also traditional manufactures like Honeywell, ABB, GE, Emerson, Siemens, etc)
 - Take decisions considering the sensor AD (Administrative Distance).
 - Optimize OT decisions close the 100% accuracy level in the samples.
 - Mitigate false positive samples in multi-AS IoT Environments.
 - Have a tool to help customers to improve the level of accuracy required by Internal or external policies.


IEEE P2510 – Vision Cont.

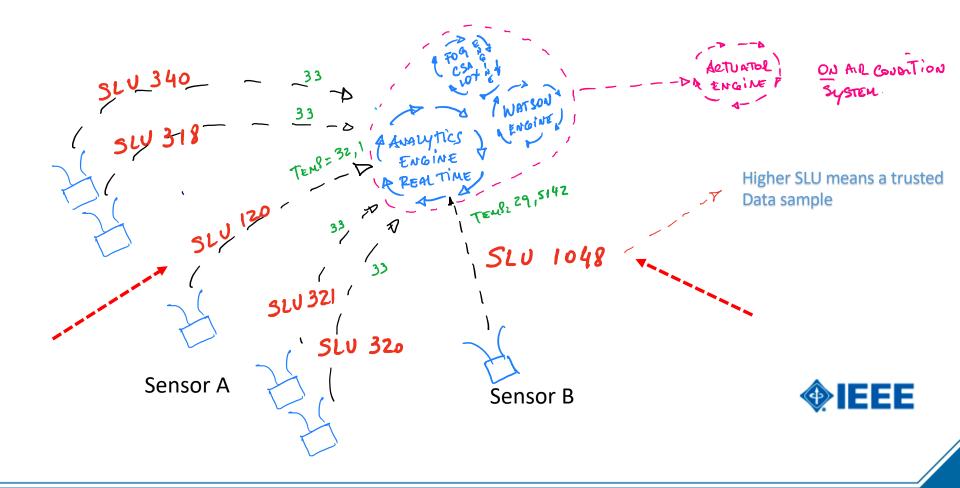
- We will provide quality certification process to guaranty minimum level of accuracy that will be considered by customers when they want buy new sensors.
- Real Time Analytics will need to know, not only the "data", but also the "level of accuracy of the information" before proceeding to "close O&G pipes, stop Cars, send alerts, etc"
- Improve the Data Correlation between multiple AS of IoT (Geolocation/temperature/pressure, etc).
- Have a parameter to understand the quality of the data is critical to improve the productivity in the business operation and enforce the industrial safety.



EPS Technical aspects

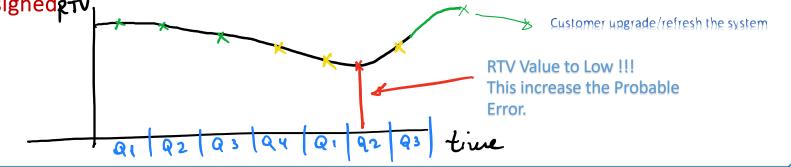


EPS Technical aspects



EPS Technical aspects

EPS Engineering aspects



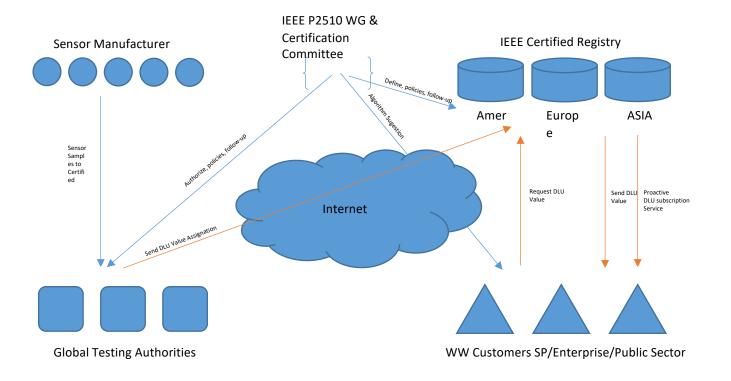
EPS Engineering aspects

We will need an Algorithm to do it !!

- EPS-Algorithm will use the SLU value to calculate to OPTSV (optimum possible Total Sample value) vs the RTV (Resultant Total Value) and will inform to the analytic engine this value.
- The Analytic Engine will use the RTV also to understand if the QoV (Quality of the Value) is decreasing along the time
- > The Analytic Engine will store the RTV or EPS in the database
- The Analytic Engine also will understand and detect in real time the "wrong samples" and in collaboration with the SLU-Engine the SLU will be reassignedgrv,

Solution Overview

Sensor Manufacturer


- New Sensor manufacture want to capture part of the new IoT market.
- Old and well known Sensor manufactures want to keep the differentiation in quality and price
- Customers want to implement the best cost-effective IoT solution.....
- CIOs want to implement some technical controls along the time
- CEOs want to have more data from different sources to take the best business decisions as possible

WW Customers SP/Enterprise/Public Sector

Solution Overview

Benefits of Implementing a Conformity Assessment Program

- Benefits of conformance test before deployment implementation
 - Early identification of non-conformances
 - Exact functionality of the protocol is identified
 - Multi-vendor solutions will have interoperability issues helps identify such issues
 - New offerings will have bugs helps to catch them
- Reduces the vendor's cost / need for re-tests for different end-users
- Establishes a baseline for performance expectation, at initiation and over time
- Eases interoperability
- Transparency based on common implementation / Test Authority
- https://standards.ieee.org/products-services/icap/sensorscertification-committee/index.html

